Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. DSpace-CRIS at My University
  2. 四、國外研究報告
  3. SCI期刊
Please use this identifier to cite or link to this item: https://scholars.tari.gov.tw/handle/123456789/15910
Title: Physiological Properties and Molecular Regulation in Different Edamame Cultivars under Drought Stress
Authors: Chung-Tse Chen
Chun-Tang Lu 
Jason T. C. Tzen
Chin-Ying Yang
Keywords: edamame;glycine max;drought stress;yield;ABA signaling
Issue Date: May-2021
Publisher: MDPI
Journal Volume: 11
Journal Issue: 5
Start page/Pages: 939
Source: Agronomy-Basel 
Abstract: 
Edamame (Glycine max (L.) Merr.) is an important economic crop worldwide and is a good source of protein and nutrients. Kaohsiung No. 9 (KH9), Kaohsiung No. 11 (KH11), and Xiang-Ji (XJ) are three major edamame cultivars planted in Taiwan. Edamame has high water requirements in all development stages. Insufficient irrigation causes aborted blossoms, small pods, and shriveled beans, thus greatly reducing the yield. We examined the three aforementioned cultivars in drought conditions during the blooming period. The results revealed that drought stress decreased the yield in all three cultivars; however, XJ and KH11 showed better drought resistant ability than KH9 did. The reduction of the qualification rate and the dry weight of qualified pods by drought stress in XJ, KH9 and KH11 was 23%, 33%, 21% and 32%, 62%, and 44%, respectively. The quantitative reverse-transcription polymerase chain reaction results indicated that genes involved in the abscisic acid (ABA) biosynthesis, ABA-dependent, and ABA-independent pathways were upregulated by drought stress in KH11, which may explain why KH11 produced higher yields than KH9 after drought treatment. We determined that drought-related signaling transduction differed among these edamame cultivars, resulting in different drought tolerance.
URI: https://www.mdpi.com/2073-4395/11/5/939
https://scholars.tari.gov.tw/handle/123456789/15910
ISSN: 2073-4395
DOI: 10.3390/agronomy11050939
Appears in Collections:SCI期刊

Show full item record

Page view(s)

45
checked on May 19, 2022

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Academic & Publications
  • Research Outputs
  • Researchers
  • Organizations
  • Projects

關於學術典藏系統:收錄本所研究產出,對外展示研究成果,提升學術影響力。

Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback