Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. DSpace-CRIS at My University
  2. 4.SCI
  3. SCI期刊
Please use this identifier to cite or link to this item: https://scholars.tari.gov.tw/handle/123456789/1754
Title: Different effects on triacylglycerol packaging to oil bodies in transgenic rice seeds by specifically eliminating one of their two oleosin isoforms
Authors: Yu-Yi Wu
Yu-Ru Chou
Chang-Sheng Wang
Tung-Hai Tseng
Liang-Jwu Chen
Jason T.C. Tzen
Keywords: Oleosin isoforms;Rice;RNAi;Seed oil bodies
Issue Date: Mar-2010
Publisher: ScienceDirect
Journal Volume: 48
Journal Issue: 2-3
Start page/Pages: 81-89
Source: Plant Physiology and Biochemistry 
Abstract: 
Expression of OLE16 and OLE18, two oleosin isoforms in oil bodies of rice seeds, was suppressed by RNA interference. Electron microscopy revealed a few large, irregular oil clusters in 35S::ole16i transgenic seed cells, whereas accumulated oil bodies in 35S::ole18i transgenic seed cells were comparable to or slightly larger than those in wild-type seed cells. Large and irregular oil clusters were observed in cells of double mutant seeds. These unexpected differences observed in oil bodies of 35S::ole16i and 35S::ole18i transgenic seeds were further analyzed. In comparison to wild-type plants, OLE18 levels were reduced to approximately 40% when OLE16 was completely eliminated in 35S::ole16i transgenic plants. In contrast, OLE16 was reduced to only 80% of wild-type levels when OLE18 was completely eliminated in 35S::ole18i transgenic plants. While the triacylglycerol content of crude seed extracts of 35S::ole16i and 35S::ole18i transgenic seeds was reduced to approximately 60% and 80%, respectively, triacylglycerol in isolated oil bodies was respectively reduced to 45% and 80% in accordance with the reduction of their oleosin contents. Oil bodies isolated from both 35S::ole16i and 35S::ole18i transgenic seeds were found to be of comparable size and stability to those isolated from wild-type rice seeds, although they were merely sheltered by a single oleosin isoform. The drastic difference between the triacylglycerol contents of crude seed extracts and isolated oil bodies from 35S::ole16i transgenic plants could be attributed to the presence of large, unstable oil clusters that were sheltered by insufficient amounts of oleosin and therefore could not be isolated together with stable oil bodies.
URI: https://scholars.tari.gov.tw/handle/123456789/1754
https://www.sciencedirect.com/science/article/pii/S0981942809002459?via%3Dihub
ISSN: 0981-9428
DOI: 10.1016/j.plaphy.2009.12.004
Appears in Collections:SCI期刊

Files in This Item:
File Description SizeFormat
index.html22 kBHTMLView/Open
Show full item record

WEB OF SCIENCETM
Citations

27
checked on May 30, 2023

Page view(s)

36
Last Week
1
Last month
checked on Jun 3, 2023

Download(s)

20
checked on Jun 3, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Academic & Publications
  • Research Outputs
  • Researchers
  • Organizations
  • Projects

關於學術典藏系統:收錄本所研究產出,對外展示研究成果,提升學術影響力。

Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback