Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. DSpace-CRIS at My University
  2. 4.SCI
  3. SCI期刊
Please use this identifier to cite or link to this item: https://scholars.tari.gov.tw/handle/123456789/17760
Title: Denitrifiers and Nitrous Oxide Emissions from a Subtropical Vegetable Cropland
Authors: Syu-Ruei Jhang
Yi-Ying Chen
Yo-Jin Shiau
Chia-Wei Lee
Wei-Nai Chen
Chih-Chung Chang
Chih-Feng Chiang 
Horng-Yuh Guo
Pao-Kuan Wang
Charles C.-K. Chou
Keywords: nitrous oxide emission;greenhouse gas;fertilization;denitrification;microbial composition
Issue Date: Jul-2022
Publisher: American Chemical Society
Source: ACS Earth and Space Chemistry 
Abstract: 
Anthropogenic emission of nitrous oxide (N2O) is attributed mostly to the application of nitrogen fertilizers in the agricultural sector. Along with the rapid growth of population and the need for foods, the influence of N2O is expected to further increase in the near future. However, studies on the links between N2O emissions and microbial community at a farmland scale are limited. We present the N2O eddy covariance data set from a Chinese cabbage farmland in Taiwan, a subtropical region. Our results reveal that N2O fluxes from soils are elevated during the daytime and decrease at night. Fertilization and the soil temperature significantly affected the microbial community throughout the cultivation periods, leading to an increased abundance of denitrifiers. Moreover, it was found that among the known taxa, Bradyrhizobium and Luteimonas bacteria were among the most abundant denitrifiers, in particular, the fertilization periods, which could be responsible for the high production of N2O because of their incomplete denitrification pathways. The total N2O-N efflux in this study accounts for 2.3-2.5% of the nitrogen in the fertilizers, which is significantly higher than the IPCC default parameter of 1%. We synthesized a data set of N2O eddy covariance measurements and found that the emission of N2O from soils exhibits an exponential increase with the density of N-fertilizers applied. The results underline the significance of N2O emissions from fertilized soils, which are significantly underestimated in the current national emission inventories of greenhouse gases. Moreover, the results shed light on the microbial and physical technology to reduce N2O emissions.
URI: https://pubs.acs.org/doi/10.1021/acsearthspacechem.2c00106#
https://scholars.tari.gov.tw/handle/123456789/17760
ISSN: 2472-345
DOI: 10.1021/acsearthspacechem.2c00106
Appears in Collections:SCI期刊

Show full item record

Page view(s)

22
checked on Nov 18, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Academic & Publications
  • Research Outputs
  • Researchers
  • Organizations
  • Projects

關於學術典藏系統:收錄本所研究產出,對外展示研究成果,提升學術影響力。

Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback