Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. DSpace-CRIS at My University
  2. 1.研究單位
  3. 作物組
Please use this identifier to cite or link to this item: https://scholars.tari.gov.tw/handle/123456789/18252
Title: 隨機森林的理論及應用範例說明
Other Titles: The Theory and Illustration of Application of Random Forest
Authors: 林詠淳
康樂 
郭寶錚
Lin, Yung-chun
Le Kang 
Kuo, Bo-jein
Keywords: 機器學習;隨機森林;資料分析;Machine learning;Random forest;Data analysis
Issue Date: Mar-2020
Publisher: 台灣農藝學會、中華農業氣象學會
Journal Volume: 17
Journal Issue: 1
Start page/Pages: 1-12
Source: 作物、環境與生物資訊 
Abstract: 
隨著大據時代的來臨,如何從大量的資料中萃取出有價值的訊息顯得格外重要,因此發展出一套能透過樣本訓練機器辨識和學習的機器學習演算法,來有效處理日益繁雜的大量資料。
With the advent of big data generation, it is and important task to extract valuable information from a large amount of data. Therefore, different types of machine learning algorithms that can train machine recognition and learning from samples have been developed.
URI: https://scholars.tari.gov.tw/handle/123456789/18252
ISSN: 1181-7406
DOI: 10.30061/CEB.202001_17(1).001
Appears in Collections:作物組

Show full item record

Page view(s)

76
checked on Mar 29, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Academic & Publications
  • Research Outputs
  • Researchers
  • Organizations
  • Projects

關於學術典藏系統:收錄本所研究產出,對外展示研究成果,提升學術影響力。

Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback