Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. DSpace-CRIS at My University
  2. 4.SCI
  3. SCI期刊
Please use this identifier to cite or link to this item: https://scholars.tari.gov.tw/handle/123456789/19097
Title: Sugariness prediction of Syzygium samarangense using convolutional learning of hyperspectral images
Authors: Chih-Jung Chen
Yung-Jhe Yan
Chi-Cho Huang 
Jen-Tzung Chien
Chang-Ting Chu
Je-Wei Jang
Tzung-Cheng Chen
Shiou-Gwo Lin
Ruei-Siang Shih
Mang Ou-Yang
Issue Date: Feb-2022
Publisher: Nature Portfolio
Journal Volume: 12
Journal Issue: 1
Start page/Pages: 2774
Source: Scientific Reports 
Abstract: 
Sugariness is one of the most important indicators to measure the quality of Syzygium samarangense, which is also known as the wax apple. In general, farmers used to measure sugariness by testing the extracted juice of the wax apple products. Such a destructive way to measure sugariness is not only labor-consuming but also wasting products. Therefore, non-destructive and quick techniques for measuring sugariness would be significant for wax apple supply chains. Traditionally, the non-destructive method to predict the sugariness or the other indicators of the fruits was based on the reflectance spectra or Hyperspectral Images (HSIs) using linear regression such as Multi-Linear Regression (MLR), Principal Component Regression (PCR), and Partial Least Square Regression (PLSR), etc. However, these regression methods are usually too simple to precisely estimate the complicated mapping between the reflectance spectra or HSIs and the sugariness. This study presents the deep learning methods for sugariness prediction using the reflectance spectra or HSIs from the bottom of the wax apple. A non-destructive imaging system fabricated with two spectrum sensors and light sources is implemented to acquire the visible and infrared lights with a range of wavelengths. In particular, a specialized Convolutional Neural Network (CNN) with hyperspectral imaging is proposed by investigating the effect of different wavelength bands for sugariness prediction. Rather than extracting spatial features, the proposed CNN model was designed to extract spectral features of HSIs. In the experiments, the ground-truth value of sugariness is obtained from a commercial refractometer. The experimental results show that using the whole band range between 400 and 1700 nm achieves the best performance in terms of degrees Brix error. CNN models attain the degrees Brix error of +/- 0.552, smaller than +/- 0.597 using Feedforward Neural Network (FNN). Significantly, the CNN's test results show that the minor error in the interval 0 to 10 degrees Brix and 10 to 11 degrees Brix are +/- 0.551 and +/- 0.408, these results indicate that the model would have the capability to predict if sugariness is below 10 degrees Brix or not, which would be similar to the human tongue. These results are much better than +/- 1.441 and +/- 1.379 by using PCR and PLSR, respectively. Moreover, this study provides the test error in each degrees Brix interval within one Brix, and the results show that the test error is varied considerably within different degrees Brix intervals, especially on PCR and PLSR. On the other hand, FNN and CNN obtain robust results in terms of test error.
URI: https://www.nature.com/articles/s41598-022-06679-6
https://scholars.tari.gov.tw/handle/123456789/19097
ISSN: 2045-2322
DOI: 10.1038/s41598-022-06679-6
Appears in Collections:SCI期刊

Show full item record

Page view(s)

9
checked on Mar 25, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Academic & Publications
  • Research Outputs
  • Researchers
  • Organizations
  • Projects

關於學術典藏系統:收錄本所研究產出,對外展示研究成果,提升學術影響力。

Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback